**Useful references and some sources of the statistics used:**
Abrahart, R.J. and See, L. (2000) ‘Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments’, *Hydrological Processes*, Vol 14, pp 2157 – 2172.
Akaike, H. (1974) ‘A new look at the statistical model identification’, *IEEE Transactions on Automotive Control*, AC-19, pp 716 – 723.
Appolov, B., Kalinin G., Komarov, V. (1974): Hydrological forecasting course, Guidrometeoizdat, Leningrad, 419 p. (In Russian)
Armstrong, J.S. and Collopy, F. (1992) ‘Error measures for generalizing about forecasting methods: Empirical comparisons’, *Journal of Forecasting*, Vol 8, pp 69 – 80.
Astatkie, T. (2006) 'Absolute and relative measures for evaluating the forecasting performance of time series models for daily streamflows', *Nordic Hydrology*, Vol 37(3), pp 205 - 215.
ASCE (1993) ‘Criteria for evaluation of watershed models’, *Journal of Irrigation and Drainage Engineering*, Vol 119(3), pp 429 – 442.
Beran, M. (1999) ‘Hydrograph prediction – how much skill?’, *Hydrology and Earth System Sciences*, Vol 3(2), pp 305 – 307.
Criss, R.E. and Winston, W.E. (2008) 'Do Nash values have value? Discussion and alternate proposals', Hydorlogical Processes, Vol 22, pp 2723 - 2725.
Dawson, C.W. and Wilby, R.L. (2001) 'Hydrological modelling using artificial neural networks', *Progress in Physical Geography*, 0309-1333, Vol 25(1), pp 80 - 108.
Dawson, C.W. Abrahart, R.J. and See, L.M. (2007) 'HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts', *Environmental Modelling and Software*, Vol 22, pp 1034 - 1052.
deVos, N.J. and Rientjes, T.H.M. (2005) ‘Constraints of artificial neural networks for rainfall-runoff modelling: trade-offs in hydrological state representation and model evaluation’, *Hydrology and Earth System Sciences*, Vol 9, pp 111 – 126.
de Vos, N.J., Rientjes, T.H.M. (2007) 'Multi-objective performance
comparison of an artificial neural network and a conceptual
rainfall-runoff model', Hydroloigcal Sciences Journal, Vol 52(3), pp 397 - 413.
Garrick, M., Cunnane, C., Nash, J.E. (1978) ‘A criterion of efficiency for rainfall-runoff models’, *Journal of Hydrology*, Vol 36, pp 375-381.
Gupta, H.V. Sorooshian, S. and Yapo, P.O. (1998) 'Toward improved calibration of hydrological models: Multiple and noncommensurable measures of information, *Water Resources Research*, Vol 34(4), pp 751 - 763.
Gupta, H.V. Kling, H. Yilmaz, K.K. and Martinez, G.F. (2009) 'Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling', *Journal of Hydrology*, Vol 377, pp 80-91.
Hall, M.J. (2001) 'How well does your model fit the data?',* Journal of Hydroinformatics*, Vol 3(1), pp 49 - 55.
Huang, W.C. and Yang, F.T. (2005) ‘A study on regionalized hydrologic model’, < http://wrm.hre.ntou.edu.tw/wrm/sci/water10th/>, (accessed 29 September, 2005)
Jain, A. and Srinivasulu, S. (2004) 'Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques', *Water Resources Research*, Vol 40, W04302.
Kanji, G.K. (1993) '100 Statistical Tests', Sage Publications, London.
Karunanithi, N., Grenney, W., Whitley, D., Bovee, K. (1994) ‘Neural networks for river flow prediction’, *Journal of Computing in Civil Engineering*, Vol 8, pp. 201 – 220.
Kitanidis, P.K. and Bras, R.L. (1980) 'Real-time forecasting with a conceptual hydrologic model: 2. Application and results', *Water Resources Research*, Vol 16, pp 1034 - 1044.
Kumar, A.R.S. Sudheer, K.P. Jain, S.K. and Agarwal, P.K. (2005) 'Rainfall-runoff modelling using artificial neural networks: comparison of network types', *Hydrological Processes*, Vol 19, pp 1277 - 1291.
Legates, D.R. and McCabe, G.J. (1999) 'Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation', *Water Resources Research*, Vol 35(1), pp 233 - 241.
Lin, G.F. and Chen, L.H. (2005) 'Time series forecasting by combining the radial basis function network and self-organizing map', *Hydrological Processes*, Vol 19, pp 1925 - 1937.
Lorrai, M. and Sechi G. (1995) ‘Neural nets for modelling rainfall-runoff transformations’, *Water Resources Management*, Vol 9, pp 299 - 313.
Madsen, H. (2000) 'Automatic calibration of a conceptual rainfall-runoff model using multiple objectives', *Journal of Hydrology*, Vol 235, pp 276 - 288.
Nash, J.E. and Sutcliffe, J.V. (1970) ‘River flow forecasting through conceptual models 1: A discussion of principles’, *Journal of Hydrology*, Vol 10, pp 282 – 290.
Popov E.G. (1968): Fundaments of hydrological forecasting, Guidrometeorologuicheskoie izdatielztvo, Leningrad, 294 p. (in Russian)
Rissanen, J. (1978) ‘Modeling by short data description’, *Automation*, Vol 14, pp 465 – 471.
Seibert, J. (2001) ‘On the need for benchmarks in hydrological modelling’, *Hydrological Processes*, Vol 15, pp 1063 – 1064.
Shamseldin, A.Y. (1997) ‘Application of a neural network technique to rainfall-runoff modelling’, *Journal of Hydrology*, Vol 199, pp 272 – 294.
Teegavarapu, R. and Elshorbagy, A. (2005) ‘Fuzzy set based error measure for hydrologic model evaluation’,* Journal of Hydroinformatics*, Vol 7(3), pp 199 – 207.
Watts, G. (1997) ‘Hydrological modelling in practice’, in Contemporary Hydrology: Towards holistic environmental science, Wilby, R.L. (ed), John Wiley, UK.
Wilmott, C.J. (1981) ‘On the validation of models’, *Physical Geography*, Vol 2, pp 184 – 194. |